kg <- "1992-01-01:
kikan <- "1992-01-01:
k2k <- "2000-01-01:
# prepare parameters.
l <- 48 # # of months to predict
r <- 1.05 #
# get data from FRED
getSymbols('SPCS10RSA',src='FRED')
CS <- SPCS10RSA
PA <- PAYEMS
UC <- UNDCONTSA
# download data from yahoo
SP5 <- as
G <- GDP
# for the case the current time is more than 6 months away from the last GDP data, the below is to adjust # of months for GDP forecast.
### caution still in debug
if(floor(MonthsBetween(mondate(last(index(G))),mondate(Sys.Date()))) > 5){ i <- i+1}
### caution ends
m_GDP <- as.xts(as.vector(last(GDP)) * r**(i/4),d)
m_PA <- (as.xts(forecast(auto.arima(PA),h=l)$mean[1:l],as.Date(as.yearmon(seq(mondate(index(last(PA)))+1,by=1,length.out=l))))[(3-month(index(last(PA))) %% 3) + seq(1,l-3,3)])[d]
m_UC <- (as.xts(forecast(auto.arima(UC),h=l)$mean[1:l],as.Date(as.yearmon(seq(mondate(index(last(UC)))+1,by=1,length.out=l))))[(3-month(index(last(UC))) %% 3) + seq(1,l-3,3)])[d]
m_CS <-
(as.xts(forecast(auto.arima(CS),h=l)$mean[1:l],as.Date(as.yearmon(seq(mondate(index(last(CS)))+1,by=1,length.out=l))))[(3-month(index(last(CS))) %% 3) + seq(1,l-3,3)])[d]
# predict next 9
my_sp5(kikan,m_GDP[1:9],m_PA_backup[1:9],m_UC[1:9])
# by GPUC
# use "as.xts()", not "xts()"
# this assumes case
my_sp5cs(k2k,m_GDP[1:9],m_PA[1:9],m_UC[1:9],as.xts(seq(223,223+2*8,2),index(m_PA[1:9])))
# or use m_CS[1:9]
0 件のコメント:
コメントを投稿