read file and normalize data to adjust TZ.
THIS ENTRY IS OBSOLETE. PLEASE GO TO THIS PAGE
# read data as csv format and convert to xts to plot
#
Sys.setenv(TZ=Sys.timezone())
bp <- read.csv("~/Downloads/bp - シート1.csv")
system("rm \"$HOME/Downloads/bp - シート1.csv\"")
bp.xts <- xts(bp[,c(-1,-2,-6)],as.POSIXct(paste(bp$Date,bp$Time,sep=" "),tz=Sys.timezone()),tz=Sys.timezone())
# weekly average
apply.weekly(bp.xts[bp.xts$High > 95],mean)
#
#
# prepare data according to system timezone. "Asia/Tokyo" in most cases.
#
bp.day <- merge(as.xts(as.vector(bp.xts[,1]),as.Date(index(bp.xts),tz=tzone(bp.xts))),as.vector(bp.xts[,2]))
colnames(bp.day)[1] <- "high"
colnames(bp.day)[2] <- "low"
#
# prepare timezone 2 hours behind "Asia/Tokyo".
#
bp.bangkok <- merge(as.xts(as.vector(bp.xts[,1]),as.Date(index(bp.xts),tz="Asia/Bangkok")),as.vector(bp.xts[,2]))
colnames(bp.bangkok)[1] <- "high"
colnames(bp.bangkok)[2] <- "low"
apply.weekly(bp.bangkok,mean)
0 件のコメント:
コメントを投稿