# the sample of xts object.
> cli_xts["2019::"]
oecd usa china ea19
2019-01-01 99.53469 99.71027 98.70411 99.77903
2019-02-01 99.43623 99.54673 98.69403 99.66678
2019-03-01 99.36298 99.40987 98.71894 99.55812
2019-04-01 99.30513 99.28092 98.75597 99.45299
2019-05-01 99.25108 99.15568 98.80080 99.34872
2019-06-01 99.20237 99.03459 98.86234 99.24314
2019-07-01 99.15969 98.91864 98.94160 99.14515
2019-08-01 99.12648 98.81747 99.02364 99.06464
2019-09-01 99.10692 98.75613 99.10512 99.00034
# in order to create the sample matirx, use matrix() to transform xts to marix
> matrix(cli_xts["2019::"],ncol=4)
[,1] [,2] [,3] [,4]
[1,] 99.53469 99.71027 98.70411 99.77903
[2,] 99.43623 99.54673 98.69403 99.66678
[3,] 99.36298 99.40987 98.71894 99.55812
[4,] 99.30513 99.28092 98.75597 99.45299
[5,] 99.25108 99.15568 98.80080 99.34872
[6,] 99.20237 99.03459 98.86234 99.24314
[7,] 99.15969 98.91864 98.94160 99.14515
[8,] 99.12648 98.81747 99.02364 99.06464
[9,] 99.10692 98.75613 99.10512 99.00034
# matrix require 2 dim. index like [1,] to pick up the designated row.
> matrix(cli_xts["2019::"],ncol=4)[1,]
[1] 99.53469 99.71027 98.70411 99.77903
# while xts requires [1].
> cli_xts["2019::"][1]
oecd usa china ea19
2019-01-01 99.53469 99.71027 98.70411 99.77903
> cli_xts["2019::"][1,1]
oecd
2019-01-01 99.53469
> matrix(cli_xts["2019::"],ncol=4)[1,1]
[1] 99.53469
# for the case of data frame.
> data.frame(cli_xts["2019::"],ncol=4)
oecd usa china ea19 ncol
2019-01-01 99.53469 99.71027 98.70411 99.77903 4
2019-02-01 99.43623 99.54673 98.69403 99.66678 4
2019-03-01 99.36298 99.40987 98.71894 99.55812 4
2019-04-01 99.30513 99.28092 98.75597 99.45299 4
2019-05-01 99.25108 99.15568 98.80080 99.34872 4
2019-06-01 99.20237 99.03459 98.86234 99.24314 4
2019-07-01 99.15969 98.91864 98.94160 99.14515 4
2019-08-01 99.12648 98.81747 99.02364 99.06464 4
2019-09-01 99.10692 98.75613 99.10512 99.00034 4
# a index works in the same way as matrix.
> data.frame(cli_xts["2019::"],ncol=4)[1,]
oecd usa china ea19 ncol
2019-01-01 99.53469 99.71027 98.70411 99.77903 4
> data.frame(cli_xts["2019::"],ncol=4)[1,1]
[1] 99.53469
# a single dimention index also works fine for data frame
# but it takes column for the parameter
> data.frame(cli_xts["2019::"],ncol=4)[1]
oecd
2019-01-01 99.53469
2019-02-01 99.43623
2019-03-01 99.36298
2019-04-01 99.30513
2019-05-01 99.25108
2019-06-01 99.20237
2019-07-01 99.15969
2019-08-01 99.12648
2019-09-01 99.10692
# on the other hand, single dim. index taken for the row.
> cli_xts["2019::"][1]
oecd usa china ea19
2019-01-01 99.53469 99.71027 98.70411 99.77903
0 件のコメント:
コメントを投稿