2020年1月23日木曜日

The relationship between cli 1month delta and eps quarter over quater growth.




1) t.test

t.test between grop of cli delta is minus and plus. result is there is only 0.019% probability that those two groups posess same mean value. This result means they are different groups each other.


t.test(
diff(eps_year_xts,1)["2001::2018"][ apply.quarterly(diff(cli_xts$usa),mean)["2001::2018"] > 0],
diff(eps_year_xts,1)["2001::2018"][ apply.quarterly(diff(cli_xts$usa),mean)["2001::2018"] < 0]
)


# Welch Two Sample t-test

# data:  diff(eps_year_xts, 1)["2001::2018"][apply.quarterly(diff(cli_xts$usa),  and diff(eps_year_xts, 1)["2001::2018"][apply.quarterly(diff(cli_xts$usa),     mean)["2001::2018"] > 0] and     mean)["2001::2018"] < 0]
# t = 3.9531, df = 66.145, p-value = 0.0001903
# alternative hypothesis: true difference in means is not equal to 0
# 95 percent confidence interval:
#  3.115924 9.474840
# sample estimates:
# mean of x mean of y 
#  4.117125 -2.178257 


2) spot diagram


diff(eps_year_xts,1)["2001::2018"][ apply.quarterly(diff(cli_xts$usa),mean)["2001::2018"] > 0]
df <- data.frame(
cli=as.vector(apply.quarterly(diff(cli_xts$oecd),mean)["2001::2018"]),
eps=as.vector(diff(eps_year_xts,1)["2001::2018"]),
sign=as.vector(year(index(diff(eps_year_xts,1)["2001::2018"])))
)
p <- ggplot(df, aes(x=cli,y=eps,color=sign))
p <- p + geom_point(alpha=0.5)
p <- p + geom_smooth(method = "lm")
plot(p)




3)histgram

func <- function(x){if(x > 0){return("p")}else{return("m")}}
df <- data.frame(eps=round(as.vector(diff(eps_year_xts,1)["2001::2018"]),digits=2),
sign=as.vector(apply(apply.quarterly(diff(cli_xts$usa),mean)["2001::2018"],1,func)))
# parameter ase() better be put into a single line.
p <- ggplot(df, aes(x=eps,fill=sign))
p <- p + geom_histogram(bins=50,position = "identity", alpha = 0.5)
plot(p)


0 件のコメント: