2021年4月29日木曜日

名目GDP四半期伸び率 vs. CLI Delta Nominal GDP quater basis legend title #spline #gdp

 

名目GDP四半期伸び率 vs. CLI Delta Nominal GDP quater basis を対照プロットする。


period <- "2001::2021-06"  # end period month should be march,june,september or december.
w <- (GDPC1/lag(GDPC1))[period] - 1
result <- lm(as.vector(diff(apply.quarterly(cli_xts$oecd,mean))[period]) ~ w)
df <- data.frame(delta=as.vector(diff(apply.quarterly(cli_xts$oecd,mean))[period]) ,gdp=as.vector(w)
                 ,spx= as.vector(quarterlyReturn(GSPC)[period])  )

p <- ggplot(df, aes(y=delta,x=gdp))
p <- p + theme_gray (base_family = "HiraKakuPro-W3")
p <- p + xlab("GDP四半期伸び率") + ylab("CLI delta")
p <- p + geom_point(alpha=1,aes(color=spx))
p <- p + scale_color_gradient(low = "red", high = "green")
p <- p + geom_smooth(method = "lm",se=F,size=0.5)
p <- p + geom_vline(xintercept =(-1*result$coefficients[1] / result$coefficients[2]),
                    size=0.5,linetype=2,colour="red",alpha=0.5)
p <- p + geom_hline(yintercept = last(as.vector(diff(apply.quarterly(cli_xts$oecd,mean))[period])),
                    size=0.5,linetype=2,colour="green",alpha=0.5)
p <- p + geom_vline(xintercept = last(w),
                    size=0.5,linetype=2,colour="green",alpha=0.5)
p <- p+annotate("text",label=as.character(round(-1*result$coefficients[1] / result$coefficients[2],4)),x=(-1*result$coefficients[1] / result$coefficients[2]), y=-5.1,colour='red')
p <- p+annotate("text",label=as.character(round(last(w),4)),x=last(w), y=-5.1,colour='green')

p <- p +  labs(color="S&P500\n四半期\n収益率")
plot(p)
summary(result)

spline を使用して補完の上月次GDPを算出その上でグラフを作成する。

period <- "2015::2021-09"  # end period month should be march,june,september or december.

w <- spline(GDPC1[period],xmin=1/3,xmax=length(GDPC1[period])+1/3,n=3*length(GDPC1[period])+1,method='natural')$y
# w <- w/lag(w) -1
w <- w[2:length(w)]/w[1:(length(w)-1)] - 1
# w <- (GDPC1/lag(GDPC1))[period] - 1

# result <- lm(as.vector(diff(cli_xts$oecd)[period]) ~ w)
result <- lm(as.vector(diff(cli_xts$oecd)[period]) ~ w)
df <- data.frame(delta=as.vector(diff((cli_xts$oecd))[period]) ,gdp=as.vector(w)
                 ,spx= as.vector(monthlyReturn(GSPC)[period])  )

p <- ggplot(df, aes(y=delta,x=gdp))
p <- p + theme_gray (base_family = "HiraKakuPro-W3")
p <- p + xlab("GDP補正月間伸び率") + ylab("CLI delta")
p <- p + geom_point(alpha=1,aes(color=spx))
p <- p + scale_color_gradient(low = "red", high = "green")
p <- p + geom_smooth(method = "lm",se=F,size=0.5)
p <- p + geom_vline(xintercept =(-1*result$coefficients[1] / result$coefficients[2]),
                    size=0.5,linetype=2,colour="red",alpha=0.5)
p <- p + geom_hline(yintercept = last(as.vector(diff((cli_xts$oecd))[period])),
                    size=0.5,linetype=2,colour="green",alpha=0.5)
p <- p + geom_vline(xintercept = last(w),
                    size=0.5,linetype=2,colour="green",alpha=0.5)
p <- p+annotate("text",label=as.character(round(-1*result$coefficients[1] / result$coefficients[2],4)),x=(-1*result$coefficients[1] / result$coefficients[2]), y=-5.1,colour='red')
p <- p+annotate("text",label=as.character(round(last(w),4)),x=last(w), y=-5.1,colour='green')

p <- p +  labs(color="S&P500\n月間\n収益率")
plot(p)
summary(result)



> summary(result)

Call:
lm(formula = as.vector(diff(apply.quarterly(cli_xts$oecd, mean))[period]) ~ w)

Residuals:
     Min       1Q   Median       3Q      Max 
-1.44728 -0.33122  0.01372  0.19903  2.09477 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.45260    0.06811  -6.645 3.53e-09 ***
w           47.61859    3.71852  12.806  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5276 on 79 degrees of freedom
Multiple R-squared:  0.6749, Adjusted R-squared:  0.6708 
F-statistic:   164 on 1 and 79 DF,  p-value: < 2.2e-16

2021年4月27日火曜日

EPS 2021APR27

 


MacBook-Pro-16:~/Downloads$ cat eps.txt 
12/31/2022 $54.64 $50.47 20.39 21.88 $202.75 $188.97
9/30/2022 $52.43 $49.07 21.08 22.63 $196.14 $182.75
6/30/2022 $48.86 $45.76 21.84 23.43 $189.30 $176.48
3/31/2022 $46.82 $43.67 22.64 24.32 $182.63 $170.06
12/31/2021 $48.03 $44.25 23.22 24.79 $178.09 $166.77
9/30/2021 $45.59 $42.80 24.58 26.86   $168.24 $153.96
6/30/2021 $42.19 $39.33 25.76 28.69   $160.55 $144.14
3/31/2021 (25.4%) 3972.89 $42.28 $40.39 28.49 33.72 $145.15 $122.64
12/31/2020 3756.07 $38.18 $31.44 30.69 39.90   $122.37 $94.13
9/30/2020 3363.00 $37.90 $32.98 27.26 34.24   $123.37 $98.22
6/30/2020 3100.29 $26.79 $17.83 24.75 31.24   $125.28 $99.23
3/31/2020 2584.59 $19.50 $11.88 18.64 22.22   $138.63 $116.33
12/31/2019 3230.78 $39.18 $35.53 20.56 23.16   $157.12 $139.47
9/30/2019  2976.74 $39.81 $33.99 19.46 22.40   $152.97 $132.90
6/30/2019 2941.76 $40.14 $34.93 19.04 21.75   $154.54 $135.27
3/31/2019 2834.40 $37.99 $35.02 18.52 21.09   $153.05 $134.39


MacBook-Pro-16:~/Downloads$  tac eps.txt | awk '{gsub("\\$","",$NF);print "eps_year_xts[\"2019::\"]["NR"] <- "$NF}'
eps_year_xts["2019::"][1] <- 134.39
eps_year_xts["2019::"][2] <- 135.27
eps_year_xts["2019::"][3] <- 132.90
eps_year_xts["2019::"][4] <- 139.47
eps_year_xts["2019::"][5] <- 116.33
eps_year_xts["2019::"][6] <- 99.23
eps_year_xts["2019::"][7] <- 98.22
eps_year_xts["2019::"][8] <- 94.13
eps_year_xts["2019::"][9] <- 122.64
eps_year_xts["2019::"][10] <- 144.14
eps_year_xts["2019::"][11] <- 153.96
eps_year_xts["2019::"][12] <- 166.77
eps_year_xts["2019::"][13] <- 170.06
eps_year_xts["2019::"][14] <- 176.48
eps_year_xts["2019::"][15] <- 182.75
eps_year_xts["2019::"][16] <- 188.97

> eps_year_xts["2020::"]
             [,1]
2020-01-01 116.33
2020-04-01  99.23
2020-07-01  98.22
2020-10-01  91.15
2021-01-01 114.36
2021-04-01 133.35
2021-07-01 141.08
2021-10-01 155.56

> eps_year_xts <- append(eps_year_xts,as.xts(rep(0,4),seq(as.Date("2022-01-01"),as.Date("2022-10-01"),by='quarters')))


2021年4月24日土曜日

Create your own discrete scale Source: R/scale-manual.r, R/zxx.r

original is here.


Create your own discrete scaleSource: R/scale-manual.r, R/zxx.r

These functions allow you to specify your own set of mappings from levels in the data to aesthetic values.

  • scale_colour_manual(..., values, aesthetics = "colour", breaks = waiver())
  • scale_fill_manual(..., values, aesthetics = "fill", breaks = waiver())
  • scale_size_manual(..., values, breaks = waiver())
  • scale_shape_manual(..., values, breaks = waiver())
  • scale_linetype_manual(..., values, breaks = waiver())
  • scale_alpha_manual(..., values, breaks = waiver())
  • scale_discrete_manual(aesthetics, ..., values, breaks = waiver())


Arguments passed on to discrete_scale

  • palette A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take (e.g., scales::hue_pal()).
    • limits One of:
    • NULL to use the default scale values
    • A character vector that defines possible values of the scale and their order
    • A function that accepts the existing (automatic) values and returns new ones
  • drop Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.
  • na.translate  Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.
  • na.value  If na.translate = TRUE, what aesthetic value should the missing values be displayed as? Does not apply to position scales where NA is always placed at the far right.
  • scale_name  The name of the scale that should be used for error messages associated with this scale.
  • name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.
  • labels 
    • One of:
    • NULL for no labels
    • waiver() for the default labels computed by the transformation object
    • A character vector giving labels (must be same length as breaks)
    • A function that takes the breaks as input and returns labels as output
  • guide A function used to create a guide or its name. See guides() for more information.
  • super The super class to use for the constructed scale
  • values a set of aesthetic values to map data values to. The values will be matched in order (usually alphabetical) with the limits of the scale, or with breaks if provided. If this is a named vector, then the values will be matched based on the names instead. Data values that don't match will be given na.value.
  • aesthetics Character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with. This can be useful, for example, to apply colour settings to the colour and fill aesthetics at the same time, via aesthetics = c("colour", "fill").
  • breaks
    • One of:
    • NULL for no breaks
    • waiver() for the default breaks (the scale limits)
    • A character vector of breaks
    • A function that takes the limits as input and returns breaks as output


Details


The functions scale_colour_manual(), scale_fill_manual(), scale_size_manual(), etc. work on the aesthetics specified in the scale name: colour, fill, size, etc. However, the functions scale_colour_manual() and scale_fill_manual() also have an optional aesthetics argument that can be used to define both colour and fill aesthetic mappings via a single function call (see examples). The function scale_discrete_manual() is a generic scale that can work with any aesthetic or set of aesthetics provided via the aesthetics argument.


Color Blindness

Many color palettes derived from RGB combinations (like the "rainbow" color palette) are not suitable to support all viewers, especially those with color vision deficiencies. Using viridis type, which is perceptually uniform in both colour and black-and-white display is an easy option to ensure good perceptive properties of your visulizations. 

The colorspace package offers functionalitiesto generate color palettes with good perceptive properties,to analyse a given color palette, like emulating color blindness,and to modify a given color palette for better perceptivity.

Examples

p <- ggplot(mtcars, aes(mpg, wt)) +
  geom_point(aes(colour = factor(cyl)))
p + scale_colour_manual(values = c("red", "blue", "green"))

# It's recommended to use a named vector
cols <- c("8" = "red", "4" = "blue", "6" = "darkgreen", "10" = "orange")
p + scale_colour_manual(values = cols)

# You can set color and fill aesthetics at the same time
ggplot(
  mtcars,
  aes(mpg, wt, colour = factor(cyl), fill = factor(cyl))
) +
  geom_point(shape = 21, alpha = 0.5, size = 2) +
  scale_colour_manual(
    values = cols,
    aesthetics = c("colour", "fill")
  )

# As with other scales you can use breaks to control the appearance
# of the legend.
p + scale_colour_manual(values = cols)
p + scale_colour_manual(
  values = cols,
  breaks = c("4", "6", "8"),
  labels = c("four", "six", "eight")
)

# And limits to control the possible values of the scale
p + scale_colour_manual(values = cols, limits = c("4", "8"))
#> Warning: Removed 7 rows containing missing values (geom_point).
p + scale_colour_manual(values = cols, limits = c("4", "6", "8", "10"))


2021年4月23日金曜日

palette color 色の定義 scale_fill_manual manal scale マニュアルスケール 色見本


1. define gradient private palette and pick up 5 colors. 

my_palette <- colorRampPalette(c("#FF0000","#FFFF00","#00FF00","#00FFFF","#0000FF"))
plot_col <- my_palette(5)[5:1]


2.pick up 5 colors from the standard palette "Spectral".

RColorBrewer::brewer.pal(5,"Spectral")[5:1]

3.display sample

barplot(rep(1,15), col=my_palette(15), axes=FALSE)

barplot(rep(1,11), col=RColorBrewer::brewer.pal(11,"Spectral")[11:1], axes=FALSE)

*note that spectral max color num is 11.

3. define private palette

my_palette <- colorRampPalette(c("#FF0000","#FFFF00","#00FF00","#00FFFF","#0000FF"))
# create 47 colors from my_palette.
g <- g + scale_fill_manual(name='regions',values=my_palette(47),labels=pref_jp)
# can't use scale_fill_hue with 'values=' parameter.



2021年4月11日日曜日

atan plot.default pch

 
> atan2(diff(cli_xts$oecd),diff(diff(cli_xts$oecd))) %>% last(.,)
               oecd
2021-03-01 1.495797

adjust to the date of the last available data.

v <- atan2(diff(cli_xts$oecd),diff(diff(cli_xts$oecd))) %>% last(.,240)
w <- monthlyReturn(GSPC)[
"::2021-03"] %>% last(.,240) # update if necessary.
par(bg="grey",fg="white")
plot.default(v,w,type='p')
tmp <- par('usr')
plot.new()
plot.default(v,w,xlim=c( tmp[1],tmp[2]), ylim=c(tmp[3], tmp[4]),type='p')
abline(v=pi/2)
abline(v=0)
par(new=T)
i <- 12
plot.default(last(v,i),last(w,i),xlim=c( tmp[1],tmp[2]), ylim=c(tmp[3], tmp[4]),type='b',pch='+',col='brown')
for(k in seq(1,9,1)){
  j <- k %% 8 + 1
  par(new=T)
  print(i)
  print(j)
  plot.default(last(v,i)[k],last(w,i)[k],xlim=c( tmp[1],tmp[2]), ylim=c(tmp[3], tmp[4]),type='p',pch=as.character(k),col=j)
}



2021年4月3日土曜日

tidyverse tidyr dplyr detach search searchpath library library(help= )

 


> search()   
> searchpaths()    # インストール場所の絶対パスを得る

# あるライブラリ中のオブジェクトの一覧を見る library(help=パッケージ名) 
# もちろんそのライブラリが既にインストールされている必要があります。

> library(gstat)       # ライブラリ gstat をロード
> library(help=gstat) # gstat 中のオブジェクト(関数、データセット)の一覧を得る


> library(tidyverse)
─ Attaching packages ─────────────────────────────────────────────────── tidyverse 1.3.0 ─
✓ tibble  3.1.0     ✓ dplyr   1.0.5
✓ tidyr   1.1.3     ✓ stringr 1.4.0
✓ readr   1.4.0     ✓ forcats 0.5.1
✓ purrr   0.3.4     
─ Conflicts ───────────────────────────────────────────────────── tidyverse_conflicts() ─
x stringr::boundary() masks strucchange::boundary()
x dplyr::filter()     masks stats::filter()
x dplyr::first()      masks xts::first()

x dplyr::lag()        masks stats::lag()
x dplyr::last()       masks xts::last()
x dplyr::select()     masks MASS::select()

> data(mtcars)
> mtcars <- as_tibble(mtcars, rownames = "model") %>% mutate(cyl = as.character(cyl))
> g <- ggplot(mtcars, aes(x = mpg, y = wt, color = cyl)) +
+     geom_text(aes(label = model), family = family_sans, fontface = "plain") +
+     labs(x =paste(family_serif, "ボールドを使用"), y = paste(family_serif, "イタリックを使用"),
+          title = paste(family_serif, "ボールドイタリックを使用")) +
+     annotate("text", x = 10, y = 2, label = paste(family_sans, "標準書体を使用"), hjust = 0) +
+     theme(
+         text = element_text(family = family_serif, face = "plain"),
+         title = element_text(face = "bold.italic"),
+         axis.title = element_text(face = "italic"),
+         axis.title.x = element_text(face = "bold")
+     )
> g
Error in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y,  : 
  polygon edge not found
In addition: There were 50 or more warnings (use warnings() to see the first 50)
> g <- ggplot(mtcars, aes(x = mpg, y = wt, color = cyl)) +
+     geom_text(aes(label = model), family = family_sans, fontface = "plain") +
+     labs(x =paste(family_serif, "ボールドを使用"), y = paste(family_serif, "イタリックを使用"),
+          title = paste(family_serif, "ボールドイタリックを使用")) +
+     annotate("text", x = 10, y = 2, label = paste(family_sans, "標準書体を使用"), hjust = 0) +
+     theme(
+         text = element_text(family = family_serif, face = "plain"),
+         title = element_text(face = "bold.italic"),
+         axis.title = element_text(face = "italic"),
+         axis.title.x = element_text(face = "bold")
+     )
> g
Error in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y,  : 
  polygon edge not found
In addition: Warning message:
In grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y,  :
  no font could be found for family "Hiragino Mincho ProN"
>
last(dmdf[,13],10)   # blocked by dplyr
Error in order(order_by)[[n]] : subscript out of bounds
> detach("package:tidyverse", unload=TRUE)
> last(dmdf[,13],10)
Error in order(order_by)[[n]] : subscript out of bounds
> search()
 [1] ".GlobalEnv"           "package:forcats"      "package:stringr"      "package:dplyr"        "package:purrr"        "package:readr"       
 [7] "package:tidyr"        "package:tibble"       "package:RColorBrewer" "package:ggplot2"      "tools:rstudio"        "package:datasets"    
[13] "package:beepr"        "package:forecast"     "package:mondate"      "package:vars"         "package:lmtest"       "package:urca"        
[19] "package:strucchange"  "package:sandwich"     "package:MASS"         "package:utils"        "package:graphics"     "package:grDevices"   
[25] "package:quantmod"     "package:TTR"          "package:xts"          "package:zoo"          "package:stats"        "package:methods"     
[31] "Autoloads"            "package:base"        
> detach("package:dplyr", unload=TRUE)
Warning message:
‘dplyr’ namespace cannot be unloaded:
  namespace ‘dplyr’ is imported by ‘dbplyr’, ‘broom’, ‘tidyr’ so cannot be unloaded 
> detach("package:tidyr", unload=TRUE)
Warning message:
‘tidyr’ namespace cannot be unloaded:
  namespace ‘tidyr’ is imported by ‘broom’ so cannot be unloaded 
> detach("package:broom", unload=TRUE)
Error in detach("package:broom", unload = TRUE) : invalid 'name' argument
> detach("package:tidyr", unload=TRUE)
Error in detach("package:tidyr", unload = TRUE) : invalid 'name' argument
> detach("package:dplyr", unload=TRUE)
Error in detach("package:dplyr", unload = TRUE) : invalid 'name' argument
> last(dmdf[,13],10)
 [1]  7 18  6  7 15 16 20 12 10 23

2021年4月1日木曜日

annotate , xlab , ylab , scale_color_hue, size, legend


df <- data.frame(case_per_capita=as.vector(apply(mdf[,-48],2,sum) / pref_db$x2017),pop_density=pref_db$x2017/pref_db$size,sign=pref_db$x2017,r=pref_db[,2])

p <- ggplot(df, aes(x=pop_density,y=case_per_capita,size=sign,color=r))
p <- p +
xlab("人口密度") + ylab("人口あたり件数")
p <- p + geom_point(alpha=1)
p <- p+annotate("text",label=pref_db[1,3],x=df[1,2], y=df[1,1]+0.1,colour='red',family = "HiraKakuProN-W3")
p <- p+annotate("text",label=pref_db[11,3],x=df[11,2], y=df[11,1]+0.1,colour='red',family = "HiraKakuProN-W3")
p <- p+annotate("text",label=pref_db[12,3],x=df[12,2], y=df[12,1]+0.1,colour='red',family = "HiraKakuProN-W3")
p <- p+annotate("text",label=pref_db[13,3],x=df[13,2], y=df[13,1]+0.1,colour='red',family = "HiraKakuProN-W3")
p <- p+annotate("text",label=pref_db[14,3],x=df[14,2], y=df[14,1]+0.1,colour='red',family = "HiraKakuProN-W3")
p <- p+annotate("text",label=pref_db[26,3],x=df[26,2], y=df[26,1]+0.1,colour='red',family = "HiraKakuProN-W3")
p <- p+annotate("text",label=pref_db[23,3],x=df[23,2], y=df[23,1]+0.1,colour='red',family = "HiraKakuProN-W3")
p <- p+annotate("text",label=pref_db[27,3],x=df[27,2], y=df[27,1]+0.1,colour='red',family = "HiraKakuProN-W3")
p <- p+annotate("text",label=pref_db[28,3],x=df[28,2], y=df[28,1]+0.1,colour='red',family = "HiraKakuProN-W3")
p <- p+annotate("text",label=pref_db[40,3],x=df[40,2], y=df[40,1]+0.1,colour='red',family = "HiraKakuProN-W3")
p <- p+annotate("text",label=pref_db[47,3],x=df[47,2], y=df[47,1]+0.1,colour='red',family = "HiraKakuProN-W3")
# p <- p +scale_color_brewer(palette="Spectral")
# p <- p +scale_color_brewer(palette=rainbow(47))
# p <- p +scale_color_brewer()
p <- p + theme_gray (base_family = "HiraKakuPro-W3")
p <- p + scale_color_hue(name="都道府県",labels=pref_db[,3])
# p <- p + guides(fill = guide_legend(reverse = F,order = 2),label = TRUE)
p <- p + guides(size = guide_legend(title="人口"))
# don't forget to set "color=". otherwise fails to show up.
p <- p + geom_smooth(method = "lm",se=F,color="red",size=1)
# p + scale_colour_manual(values = pref_db[,3])
plot(p)



for the final version, see below.


palette("Alpabet")
df <- data.frame(case_per_capita=as.vector(apply(mdf[,-48],2,sum) / pref_db$x2017),pop_density=pref_db$x2017/pref_db$size,sign=pref_db$x2017,r=pref_db[,2])
# p <- ggplot(df, aes(x=pop_density,y=case_per_capita,size=sign,color=r))
p <- ggplot(df, aes(x=pop_density,y=case_per_capita,size=sign,color=r))
p <- p + xlab("人口密度") + ylab("人口あたり件数")
p <- p + geom_point(alpha=1)
p <- p+annotate("text",label=pref_db[attributes(df[df$case_per_capita > 3 ,])$row.names,3],x=df[attributes(df[df$case_per_capita > 3 ,])$row.names,2], y=df[attributes(df[df$case_per_capita > 3 ,])$row.names,1]+0.1,colour='red',family = "HiraKakuProN-W3")
# p <- p +scale_color_brewer(palette="Spectral")
# p <- p +scale_color_brewer(palette=rainbow(47))
# p <- p +scale_color_brewer()
p <- p + theme_gray (base_family = "HiraKakuPro-W3")
p <- p + scale_color_hue(name="都道府県",labels=pref_db[,3])
# p <- p + guides(fill = guide_legend(reverse = F,order = 2),label = TRUE)
p <- p + guides(size = guide_legend(title="人口"))
# don't forget to set "color=". otherwise fails to show up.
p <- p + geom_smooth(method = "lm",se=F,color="red",size=1)  
plot(p)

df <- data.frame(death_per_capita=as.vector(apply(dmdf[,-48],2,sum) / pref_db$x2017),pop_density=pref_db$x2017/pref_db$size,sign=pref_db$x2017,r=pref_db[,2])
# p <- ggplot(df, aes(x=pop_density,y=case_per_capita,size=sign,color=r))
p <- ggplot(df, aes(x=pop_density,y=death_per_capita,size=sign,color=r))
p <- p + xlab("人口密度") + ylab("人口あたり死者数")
p <- p + geom_point(alpha=1)
p <- p+annotate("text",label=pref_db[attributes(df[df$death_per_capita > 0.07 ,])$row.names,3],x=df[attributes(df[df$death_per_capita > 0.07 ,])$row.names,2], y=df[attributes(df[df$death_per_capita > 0.07 ,])$row.names,1]+0.002,colour='red',family = "HiraKakuProN-W3")

# p <- p +scale_color_brewer(palette="Spectral")
# p <- p +scale_color_brewer(palette=rainbow(47))
# p <- p +scale_color_brewer()
p <- p + theme_gray (base_family = "HiraKakuPro-W3")
p <- p + scale_color_hue(name="都道府県",labels=pref_db[,3])
# p <- p + guides(fill = guide_legend(reverse = F,order = 2),label = TRUE)
p <- p + guides(size = guide_legend(title="人口"))
# don't forget to set "color=". otherwise fails to show up.
p <- p + geom_smooth(method = "lm",se=F,color="red",size=1)  
plot(p)