名目GDP四半期伸び率 vs. CLI Delta Nominal GDP quater basis を対照プロットする。
period <- "2001::2021-06" # end period month should be march,june,september or december.
w <- (GDPC1/lag(GDPC1))[period] - 1
result <- lm(as.vector(diff(apply.quarterly(cli_xts$oecd,mean))[period]) ~ w)
df <- data.frame(delta=as.vector(diff(apply.quarterly(cli_xts$oecd,mean))[period]) ,gdp=as.vector(w)
,spx= as.vector(quarterlyReturn(GSPC)[period]) )
p <- ggplot(df, aes(y=delta,x=gdp))
p <- p + theme_gray (base_family = "HiraKakuPro-W3")
p <- p + xlab("GDP四半期伸び率") + ylab("CLI delta")
p <- p + geom_point(alpha=1,aes(color=spx))
p <- p + scale_color_gradient(low = "red", high = "green")
p <- p + geom_smooth(method = "lm",se=F,size=0.5)
p <- p + geom_vline(xintercept =(-1*result$coefficients[1] / result$coefficients[2]),
size=0.5,linetype=2,colour="red",alpha=0.5)
p <- p + geom_hline(yintercept = last(as.vector(diff(apply.quarterly(cli_xts$oecd,mean))[period])),
size=0.5,linetype=2,colour="green",alpha=0.5)
p <- p + geom_vline(xintercept = last(w),
size=0.5,linetype=2,colour="green",alpha=0.5)
p <- p+annotate("text",label=as.character(round(-1*result$coefficients[1] / result$coefficients[2],4)),x=(-1*result$coefficients[1] / result$coefficients[2]), y=-5.1,colour='red')
p <- p+annotate("text",label=as.character(round(last(w),4)),x=last(w), y=-5.1,colour='green')
p <- p + labs(color="S&P500\n四半期\n収益率")
plot(p)
summary(result)
spline を使用して補完の上月次GDPを算出その上でグラフを作成する。
period <- "2015::2021-09" # end period month should be march,june,september or december.
w <- spline(GDPC1[period],xmin=1/3,xmax=length(GDPC1[period])+1/3,n=3*length(GDPC1[period])+1,method='natural')$y
# w <- w/lag(w) -1
w <- w[2:length(w)]/w[1:(length(w)-1)] - 1
# w <- (GDPC1/lag(GDPC1))[period] - 1
# result <- lm(as.vector(diff(cli_xts$oecd)[period]) ~ w)
result <- lm(as.vector(diff(cli_xts$oecd)[period]) ~ w)
df <- data.frame(delta=as.vector(diff((cli_xts$oecd))[period]) ,gdp=as.vector(w)
,spx= as.vector(monthlyReturn(GSPC)[period]) )
p <- ggplot(df, aes(y=delta,x=gdp))
p <- p + theme_gray (base_family = "HiraKakuPro-W3")
p <- p + xlab("GDP補正月間伸び率") + ylab("CLI delta")
p <- p + geom_point(alpha=1,aes(color=spx))
p <- p + scale_color_gradient(low = "red", high = "green")
p <- p + geom_smooth(method = "lm",se=F,size=0.5)
p <- p + geom_vline(xintercept =(-1*result$coefficients[1] / result$coefficients[2]),
size=0.5,linetype=2,colour="red",alpha=0.5)
p <- p + geom_hline(yintercept = last(as.vector(diff((cli_xts$oecd))[period])),
size=0.5,linetype=2,colour="green",alpha=0.5)
p <- p + geom_vline(xintercept = last(w),
size=0.5,linetype=2,colour="green",alpha=0.5)
p <- p+annotate("text",label=as.character(round(-1*result$coefficients[1] / result$coefficients[2],4)),x=(-1*result$coefficients[1] / result$coefficients[2]), y=-5.1,colour='red')
p <- p+annotate("text",label=as.character(round(last(w),4)),x=last(w), y=-5.1,colour='green')
p <- p + labs(color="S&P500\n月間\n収益率")
plot(p)
summary(result)
> summary(result)
Call:
lm(formula = as.vector(diff(apply.quarterly(cli_xts$oecd, mean))[period]) ~ w)
Residuals:
Min 1Q Median 3Q Max
-1.44728 -0.33122 0.01372 0.19903 2.09477
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.45260 0.06811 -6.645 3.53e-09 ***
w 47.61859 3.71852 12.806 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5276 on 79 degrees of freedom
Multiple R-squared: 0.6749, Adjusted R-squared: 0.6708
F-statistic: 164 on 1 and 79 DF, p-value: < 2.2e-16
0 件のコメント:
コメントを投稿